
1

© Roy Hann, 1/27/2026

Introducing Pyngres © Roy Hann, 20251

Python and Ingres: Pyngres

Roy Hann
roy.hann@pyngres.com

Actian User Day
Birmingham, May 1st, 2025

Introducing Pyngres © Roy Hann, 20252

Everyone is Using Python

2

© Roy Hann, 1/27/2026

Introducing Pyngres © Roy Hann, 20253

Python Access to Ingres

PyODBC
Open Database Connectivity
suited to DBMS-agnostic BI, reporting, and
analytics

for other purposes ODBC is only better than nothing
no support for asynchronous operation
Ingres extensions not supported

in particular:
no support for repeated queries
no support for bulk data loading
no support for cost tracing (lock_trace, io_trace, etc.)
no provision for other tracing (set qep, trace point
qe90, etc)

JDBC is cut from the same unsatisfactory cloth

Introducing Pyngres © Roy Hann, 20254

Python Access to Ingres

python-ingresdbi
implements the Python DB-API 2.0 standard

PEP 249
written in C, extends Python
uses ODBC under the covers

see previous slide
verrrrrry stale

15 years since the last commit

3

© Roy Hann, 1/27/2026

Introducing Pyngres © Roy Hann, 20255

Python Access to Ingres

SQLAlchemy
useful for ad hoc querying and analytics

e.g. Jupyter
otherwise vile

PugSQL is not a sufficient deodorant

Don’t get me started on ORMs
a crime against data

someone should be on trial in The Hague

AnyIngres
I have heard of it
it uses ODBC/JDBC/.Net internally
I am not sure one can even get hold of it

Introducing Pyngres © Roy Hann, 20256

So...Not Everyone is Using
Python

...not to build serious Ingres applications
There is nothing very credible or attractive
for building enterprise business
applications using Python and Ingres

no matter how nice Python is

4

© Roy Hann, 1/27/2026

Introducing Pyngres © Roy Hann, 20257

Introducing Pyngres

Pyngres: a pure Python binding for the
Actian Ingres OpenAPI

an alternative to using ODBC to access Ingres
offers some unique features and benefits

Needs an Ingres client installation
uses iigcn and the OpenAPI library
can use iigcc

Currently supported on:
Windows
Linux
MacOS/Darwin

Introducing Pyngres © Roy Hann, 20258

Pyngres Example
IIdemo_init(&envHandle);

/*
** Connect with no connection parameters.
*/
printf("apisconn: establishing connection\n");

connParm.co_genParm.gp_callback = NULL;
connParm.co_genParm.gp_closure = NULL;
connParm.co_target = argv[1];
connParm.co_connHandle = envHandle;
connParm.co_tranHandle = NULL;
connParm.co_type = IIAPI_CT_SQL;
connParm.co_username = NULL;
connParm.co_password = NULL;
connParm.co_timeout = -1;

IIapi_connect(&connParm);

while(connParm.co_genParm.gp_completed == FALSE)
 IIapi_wait(&waitParm);

connHandle = connParm.co_connHandle;
tranHandle = connParm.co_tranHandle;

envHandle = IIdemo_init()

connect with no connection parameters
print(f'{script}: establishing connection')
cop = IIAPI_CONNPARM()
cop.co_genParm.gp_callback = None
cop.co_genParm.gp_closure = None
cop.co_target = target
cop.co_connHandle = envHandle
cop.co_tranHandle = None
cop.co_type = IIAPI_CT_SQL
cop.co_username = None
cop.co_password = None
cop.co_timeout = -1
IIapi_connect(cop)
while not cop.co_genParm.gp_completed:
 IIapi_wait(wtp)
connHandle = cop.co_connHandle
tranHandle = cop.co_tranHandle

C

Python

5

© Roy Hann, 1/27/2026

Introducing Pyngres © Roy Hann, 20259

Demonstration
A walk-through of a minimal “Hello World” application,

presented using Jupyter
https://github.com/quelgeek/pyngres/blob/main/examples/pyngres-demo-1.ipynb

Introducing Pyngres © Roy Hann, 202510

Getting the Feel of Pyngres

There are 27 example C programs in
$II_SYSTEM/ingres/demo/api showing how
to use the OpenAPI
I have re-implemented most of them in
Python

https://github.com/quelgeek/pyngres/tree/main/examples

Anyone at all familiar with the OpenAPI can
read a C example alongside the Python
example

6

© Roy Hann, 1/27/2026

Introducing Pyngres © Roy Hann, 202511

Ingres Data in Python

The OpenAPI trafficks in binary data
even C programs need to format dates, money, decimal
etc from Ingres for human consumption
Python programs need to convert all data

I have provided the iitypes package to marshal
data between binary and Python objects

supports all (currently) available Ingres types
including BLObs (LONG types)
excluding geospatial (for now) and OME

e.g. varchar is converted to/from Python str
e.g. ansidate is converted to/from Python datetime.date

Introducing Pyngres © Roy Hann, 202512

Ingres Data in Python

import iitypes as ii
...
set up the tuple buffer list
tuple = {}
columnData = (py.IIAPI_DATAVALUE * gdp.gd_descriptorCount)()
for column_index in range(gdp.gd_descriptorCount):
 descriptor = gdp.gd_descriptor[column_index]
 clone = type(descriptor).from_buffer_copy(descriptor)
 descriptor = clone
 buffer_allocator = ii.allocator_for_type(descriptor)
 buffer = buffer_allocator(descriptor=descriptor)
 columnData[column_index] = buffer.datavalue
 columnName = descriptor.ds_columnName.decode()
 tuple[columnName] = buffer

Yeah, that's pretty dense, but it will handle all cases. After
you bury it in a method you'll never have to think about it
again

7

© Roy Hann, 1/27/2026

Introducing Pyngres © Roy Hann, 202513

Synchronous versus
Asynchronous

The OpenAPI is intrinsically asynchronous
To use it synchronously you have to follow
each call with a busy-wait loop

You can't even check for errors until the
gp_completed flag is set
Sure, the OpenAPI is asynchronous, but it
is hard to get the benefit of that using C

py.IIapi_connect(cop)
while not cop.co_genParm.gp_completed:
 py.IIapi_wait(wtp)

Introducing Pyngres © Roy Hann, 202514

Python Makes it Easy

The OpenAPI is a very natural fit with the
asyncio features of Python

no multi-threading required

Using the await syntax tells Python to
switch to some other runnable task

control will return automatically when the
OpenAPI call is completed

py.IIapi_connect(cop)
while not cop.co_genParm.gp_completed:
 py.IIapi_wait(wtp)

Instead of this:

await py.IIapi_connect(cop)

Do this:

8

© Roy Hann, 1/27/2026

Introducing Pyngres © Roy Hann, 202515

Pyngres Three Ways

After installing pyngres in your
environment:

import pyngres as py
straightforward binding
good for prototyping an eventual C implementation

import pyngres.blocking as py
as above but without explicit busy-wait loops
good for writing simple Python applications

import pyngres.asyncio as py
fully asynchronous using asyncio
good for implementing Python-based servers and
GUIs—anything that needs to cooperate with an event
loop

Introducing Pyngres © Roy Hann, 202516

Demonstration
10 concurrent Ingres sessions running in a single thread,

executing TPC-C workload, using asyncio
https://github.com/quelgeek/tpyc_c

9

© Roy Hann, 1/27/2026

Introducing Pyngres © Roy Hann, 202517

Reactive

Python ain’t C
it has other virtues

pyngres.asyncio is not notably fast
but it is very reactive
facilitates a good user-experience

without the complications of multi-threading
e.g. use PySide6.QtAsyncio to run Qt and Pyngres on
the same event loop
rich, responsive GUI applications interacting with
Ingres

Pyngres is plenty fast enough for:
user-facing GUIs
data-acquisition devices and IoT applications

Introducing Pyngres © Roy Hann, 202518

Secure

Pyngres is naturally resistant to most SQL-
injection exploits

because Ingres is naturally resistant
Middleware can introduce attack surfaces
even if your DBMS is as resistant as Ingres

avoiding middleware is avoiding vulnerability

10

© Roy Hann, 1/27/2026

Introducing Pyngres © Roy Hann, 202519

What's Missing?

Not much
I lost interest in IIapi_getCopyMap()

it probably works but I haven't tested it
...I suppose I probably should

Geospatial types—but just say the word!
I didn't bother with Python implementations of
the apiasvr.c and apiaclnt.c examples

using pyngres.asyncio is so slick I'd be doing a
disservice by encouraging multithreading

That really is all that's missing
I even got asynchronous callbacks to Python
functions to work

It’s tested

now, and it

works—woo-hoo!

Introducing Pyngres © Roy Hann, 202520

What Next?

There is a pure Python driver coming
not sure when but not today

Pyngres is potentially useful until then
Bare OpenAPI is (very) hard work

Pyngres is only enabling, it’s not The Answer™
I have plenty of ideas

someone could create asyncdb-ingres
someone could re-do python-ingresdbi
or someone could do something quite slick

at the very least, I’ll add a bunch of
convenience functions

11

© Roy Hann, 1/27/2026

Introducing Pyngres © Roy Hann, 202521

Special Mention

I don’t know who wrote the OpenAPI User
Guide but it has proven to be as accurate
and complete as it is laconic

what it doesn’t say is sometimes significant
Now that I know how to use the OpenAPI I
realize everything I needed to know was in
the guide all along!

except what I didn’t, which wasn’t...

Introducing Pyngres © Roy Hann, 202522

Questions?

?? ?

12

© Roy Hann, 1/27/2026

Introducing Pyngres © Roy Hann, 202523

Resources

Install Pyngres from PyPI
pip install pyngres
pip install iitypes

Clone tpyc_c and tpyc_c_db from GitHub

Contact me via roy.hann@pyngres.com

tpyc_c tpyc_c_db

	1 - Handout master
	1 - Python and Ingres: Pyngres
	1 - Everyone is Using Python
	2 - Handout master
	2 - Python Access to Ingres
	2 - Python Access to Ingres
	3 - Handout master
	3 - Python Access to Ingres
	3 - So...Not Everyone is Using Python
	4 - Handout master
	4 - Introducing Pyngres
	4 - Pyngres Example
	5 - Handout master
	5 - Slide9
	5 - Getting the Feel of Pyngres
	6 - Handout master
	6 - Ingres Data in Python
	6 - Ingres Data in Python
	7 - Handout master
	7 - Synchronous versus Asynchronous
	7 - Python Makes it Easy
	8 - Handout master
	8 - Pyngres Three Ways
	8 - Slide16
	9 - Handout master
	9 - Reactive
	9 - Secure
	10 - Handout master
	10 - What's Missing?
	10 - What Next?
	11 - Handout master
	11 - Special Mention
	11 - Questions?
	12 - Handout master
	12 - Resources

