© Roy Hann, 1/27/2026

PINGRES

Python and Ingres: Pyngres
Roy Hann
roy.hann@pyngres.com

Actian User Day
Birmingham, May 1st, 2025

Everyone is Using Python

Programming Language

Python 23.08% +6.67%

C++ 10.33% +0.56%

a
G

3 2 v e c 0.94% -0.27%
(C)

4 4 Java 9.63% +0.69%
5 S C# 4.39% -2.31%
6 6 JS JavaScript 3.71% +0.82%
7 7 Go 3.02% +1.17%

Visual Basic 2.94% +1.24%

10 9 v SQL 2.19% +0.57%

Fortran 2.04% +0.57%

‘G0
9 1 N @ Delphi/Object Pascal 2.53% +1.06%

1 10 v

PINGRES




© Roy Hann, 1/27/2026

Python Access to Ingres

= PyODBC
= Open Database Connectivity
= suited to DBMS-agnostic BI, reporting, and
analytics
= for other purposes ODBC is only better than nothing
= no support for asynchronous operation
= Ingres extensions not supported
= in particular:
no support for repeated queries
no support for bulk data loading

no support for cost tracing (lock_trace, io_trace, etc.)

no provision for other tracing (set gep, trace point
qe90, etc)

= JDBC is cut from the same unsatisfactory cloth
PIIGRES

Python Access to Ingres

= python-ingresdbi
= implements the Python DB-API 2.0 standard
= PEP 249
= written in C, extends Python
= uses ODBC under the covers
= see previous slide

= verrrrrry stale
= 15 years since the last commit

PINGRES




© Roy Hann, 1/27/2026

Python Access to Ingres

= SQLAIchemy
= useful for ad hoc querying and analytics
= e.g. Jupyter
= otherwise vile
= PugSQL is not a sufficient deodorant
= Don’t get me started on ORMs
= 3 crime against data
= someone should be on trial in The Hague
= AnylIngres
= ] have heard of it
= it uses ODBC/IDBC/.Net internally

= [ am not sure one can even get hold of it
PINGRES

So...Not Everyone is Using
Python

= ...not to build serious Ingres applications
= There is nothing very credible or attractive
for building enterprise business
applications using Python and Ingres
= no matter how nice Python is

PINGRES




© Roy Hann, 1/27/2026

Introducing Pyngres

= Pyngres: a pure Python binding for the
Actian Ingres OpenAPI

= an alternative to using ODBC to access Ingres
= offers some unique features and benefits

= Needs an Ingres client installation
= uses iigcn and the OpenAPI library
= can use iigcc

= Currently supported on:
= Windows
= Linux
= MacOS/Darwin

PINGRES

Pyngres Example

IIdemo_init(&envHandle);

/*

**  Connect with no connection parameters.

*/

printf( "apisconn: establishing connection\n" );

connParm.co_genParm.gp_callback = NULL;
connParm.co_genParm.gp_closure = NULL;
connParm.co_target = argv[1];
connParm.co_connHandle = envHandle;
connParm.co_tranHandle = NULL;
connParm.co_type = IIAPI_CT_SQL;
connParm.co_username = NULL;
connParm.co_password = NULL;
connParm.co_timeout = -1;

envHandle = IIdemo_init()

## connect with no connection parameters
print(f'{script}: establishing connection')
cop = IIAPI_CONNPARM()
cop.co_genParm.gp_callback = None
cop.co_genParm.gp_closure = None
cop.co_target = target

FALSE ) cop.co_connHandle = envHandle
cop.co_tranHandle = None

cop.co_type = IIAPI_CT_SQL

IIapi_connect( &connParm );

while( connParm.co_genParm.gp_completed ==
ITapi_wait( &waitParm );

connHandle = connParm.co_connHandle; cop.co_username = None
tranHandle = connParm.co_tranHandle; cop.co_password = None
cop.co_timeout = -1
IIapi_connect(cop)
(: while not cop.co_genParm.gp_completed:

ITapi_wait(wtp)
connHandle = cop.co_connHandle
tranHandle = cop.co_tranHandle

Python




© Roy Hann, 1/27/2026

Demonstration

A walk-through of a minimal “Hello World” application,
presented using Jupyter

https://github.com/quelgeek/pyngres/blob/main/examples/pyngres-demo-1.ipynb

PINGRES

Getting the Feel of Pyngres

= There are 27 example C programs in
$II_SYSTEM/ingres/demo/api showing how
to use the OpenAPI

= | have re-implemented most of them in
Python

= https://github.com/quelgeek/pyngres/tree/main/examples
= Anyone at all familiar with the OpenAPI can

read a C example alongside the Python
example

PINGRES




© Roy Hann, 1/27/2026

Ingres Data in Python

= The OpenAPI trafficks in binary data

= even C programs need to format dates, money, decimal
etc from Ingres for human consumption

= Python programs need to convert all data

= [ have provided the iitypes package to marshal
data between binary and Python objects
= supports all (currently) available Ingres types
= including BLObs (LONG types)
= excluding geospatial (for now) and OME
= e.g. varchar is converted to/from Python str
= e.g. ansidate is converted to/from Python datetime.date

PINGRES

Ingres Data in Python

import iitypes as ii

##t set up the tuple buffer list

tuple = {}

columnData = (py.IIAPI_DATAVALUE * gdp.gd_descriptorCount)()

for column_index in range(gdp.gd_descriptorCount):
descriptor = gdp.gd_descriptor[column_index]
clone = type(descriptor).from_buffer_copy(descriptor)
descriptor = clone
buffer_allocator = ii.allocator_for_type(descriptor)
buffer = buffer_allocator(descriptor=descriptor)
columnData[column_index] = buffer.datavalue
columnName = descriptor.ds_columnName.decode()
tuple[columnName] = buffer

Yeah, that's pretty dense, but it will handle all cases. After
you bury it in @ method you'll never have to think about it
again

PINGRES




© Roy Hann, 1/27/2026

Synchronous versus
Asynchronous

The OpenAPI is intrinsically asynchronous

= To use it synchronously you have to follow
each call with a busy-wait loop

py.IIapi_connect(cop)
while not cop.co_genParm.gp_completed:
py.IIapi_wait(wtp)

= You can't even check for errors until the
gp_completed flag is set

Sure, the OpenAPI is asynchronous, but it
is hard to get the benefit of that using C

PINGRES

Python Makes it Easy

= The OpenAPI is a very natural fit with the
asyncio features of Python
= no multi-threading required

Instead of this: Do this:

py.IIapi_connect(cop) | await py.IIapi_connect(cop)
while not cop.co_genParm.gp_completed:

py.IIapi_wait(wtp)

= Using the await syntax tells Python to
switch to some other runnable task

= control will return automatically when the
OpenAPI call is completed

PINGRES




© Roy Hann, 1/27/2026

Pyngres Three Ways

= After installing pyngres in your
environment:
= import pyngres as py
= straightforward binding
= good for prototyping an eventual C implementation
= import pyngres.blocking as py
= as above but without explicit busy-wait loops
= good for writing simple Python applications
= import pyngres.asyncio as py
= fully asynchronous using asyncio

= good for implementing Python-based servers and
GUIs—anything that needs to cooperate with an event

loop
PINGRES
Demonstration
10 concurrent Ingres sessions running in a single thread,
executing TPC-C workload, using asyncio
https://github.com/quelgeek/tpyc_c
PIVGRES




© Roy Hann, 1/27/2026

= Python ain’t C
= it has other virtues

= pyngres.asyncio is not notably fast
= but it is very reactive
= facilitates a good user-experience

= without the complications of multi-threading

= e.g. use PySide6.QtAsyncio to run Qt and Pyngres on
the same event loop

= rich, responsive GUI applications interacting with
Ingres

= Pyngres is plenty fast enough for:
= user-facing GUIs

= data-acquisition devices and IoT applications
PINGRES

= Pyngres is naturally resistant to most SQL-
injection exploits
= because Ingres is naturally resistant

= Middleware can introduce attack surfaces
even if your DBMS is as resistant as Ingres
= avoiding middleware is avoiding vulnerability

PINGRES




© Roy Hann, 1/27/2026

= Not much Jsted
= Hostinterestin-ITapi—getCopyMap() b f,: S o
— now 0,‘(\0

= Geospatial types—but just say the word!

= ] didn't bother with Python implementations of
the apiasvr.c and apiaclnt.c examples

= using pyngres.asyncio is so slick I'd be doing a
disservice by encouraging multithreading

= That really is all that's missing

= [ even got asynchronous callbacks to Python
functions to work

PINGRES

= There is a pure Python driver coming
= not sure when but not today

= Pyngres is potentially useful until then

= Bare OpenAPI is (very) hard work

= Pyngres is only enabling, it's not The Answer™
= I have plenty of ideas

= someone could create asyncdb-ingres
= someone could re-do python-ingresdbi
= or someone could do something quite slick

= at the very least, I'll add a bunch of
convenience functions

PINGRES

10



© Roy Hann, 1/27/2026

= T don’t know who wrote the OpenAPI User
Guide but it has proven to be as accurate

and complete as it is laconic
= what it doesn’t say is sometimes significant

= Now that I know how to use the OpenAPI I
realize everything I needed to know was in
the guide all along!
= except what I didn’t, which wasn't...

PINGRES

PINGRES

11



© Roy Hann, 1/27/2026

= Install Pyngres from PyPI
= pip install pyngres
= pip install iitypes
= Clone tpyc_c and tpyc_c_db from GitHub

tpyc_c

= Contact me via

PINGRES

12



	1 - Handout master
	1 - Python and Ingres: Pyngres
	1 - Everyone is Using Python
	2 - Handout master
	2 - Python Access to Ingres
	2 - Python Access to Ingres
	3 - Handout master
	3 - Python Access to Ingres
	3 - So...Not Everyone is Using Python
	4 - Handout master
	4 - Introducing Pyngres
	4 - Pyngres Example
	5 - Handout master
	5 - Slide9
	5 - Getting the Feel of Pyngres
	6 - Handout master
	6 - Ingres Data in Python
	6 - Ingres Data in Python
	7 - Handout master
	7 - Synchronous versus Asynchronous
	7 - Python Makes it Easy
	8 - Handout master
	8 - Pyngres Three Ways
	8 - Slide16
	9 - Handout master
	9 - Reactive
	9 - Secure
	10 - Handout master
	10 - What's Missing?
	10 - What Next?
	11 - Handout master
	11 - Special Mention
	11 - Questions?
	12 - Handout master
	12 - Resources

